

Motion

Set 4

7

ORING PHYSICS STAGE 3				
and Fo	rces in a Gravitational Field: Set 4			
Problem	Solution			
1	One of the masses need to be HUGE to have any noticeable gravitational attraction			
	between them, huge means greater than 10^{20} kg			
2a	No, 8km when compared to the radius of the earth is insignificant.			
2b	A very deep mine is still a very small change in r, compared to the radius of the earth. So			
	you would measure no change in your weight. If you consider the earth to be a perfect			
	sphere then your weight would decrease as you moved towards the centre of the earth			
	because the mass enclosed in the R would be less.			
2c	The density of the ground varies significantly based on the ore deposits etc in an area.			
	The Earth is not 100% spherical, it 'bulges' which generates slight changes in 'g'.			
3	The weight of a freely falling object is equal to its mass $\times g$. We feel 'weightless' when			
	we fall freely accelerating at 9.8 m s ^{-2} because if we are in a lift, (for example) we would			
	no longer feel the reaction force from the floor pushing up on us.			

1

	we full neerly decelerating at 5.0 m s because in we are in a firt, (for example) we would			
	no longer feel the reaction force from the floor pushing up on us.			
4	Because the force exerted on each kilogram is the same, so from Neewton's 2 nd law, a=			
	F/m, if m=4, the force = 9.8×4 , but a = 9.8 m s^{-2}			
5	Gravitational force is proportional to $1/r^2$ so as r halves gravitational force increases by a			
	factor of 4.			
6	$M_E = \frac{r_E^2 \times g}{G} = \frac{(6.37 \times 10^6 \text{ m})^2 \times 10 \text{ m s}^{-2}}{6.67 \times 10^{-11} \text{ N m}^2 \text{ kg}^{-1}}$			
	$M_E = \frac{1}{G} = \frac{1}{6.67 \times 10^{-11} N m^2 k a^{-1}}$			
	$=6 \times 10^{24} \text{ kg}$			

$$F = G \frac{M_1 M_2}{d^2} = 6.67 \times 10^{-11} Nm^2 kg^{-1} \times \frac{100 kg \times 100 kg}{(622 \times 10^{-3} m)^2}$$

	$1.72 \times 10^{-6} \text{ N}$
8a	Since F ? $1/d^2$. If F is to fall by 0.5, then d should increase by $\sqrt{2}$. So $\sqrt{2}$ -1 =0.414.
	$0.414 \times R_{\rm F} = 64 \times 10^6 {\rm m}$

$$g = \frac{GM_E}{(R_E + 610 \times 10^3)^2}$$

$$= 8.16 \text{ m s}^{-2} \text{ toward the Earth}$$

$$\frac{8c}{G} \frac{M_E M_s}{r^2} = \frac{M_s v^2}{r} \text{ which leads to } v^2 = G \frac{M_E}{r} = 7.55 \times 10^3 \text{ m s}^{-1}$$

$$\frac{9}{d^2} = G \frac{M_1 M_2}{r} = 6.67 \times 10^{-11} Nm^2 kg^{-1} \times \frac{5.98 \times 10^{24} kg \times 7.34 \times 10^{22} kg}{2.03 \times 10^{20} N}$$

$$\frac{10}{g \propto M_{\text{planet}} \text{ and } g \propto \frac{1}{R_{\text{slumat}}^2}$$

therefore
$$g_{\text{Neptune}} = 16.6/(3.89)^2 \times g_{\text{Earth}} = 1.1 \times g_{\text{Earth}}$$

11a	Force is constant, the acceleration and velocity change direction but the magnitude of the
	speed stays the same.
11b	2.38×10^{20} N toward the Sun
12	$T^2 \propto R^3$, therefore the higher the orbit the larger the period
13a	It would no longer be in a stable orbit and could fall to the Earth.
13b	They only appear to be stationary. They are moving with the same period of revolution
	as the point on the Earth's surface.
14a	That is the way the Earth is rotating.
 1 41	

14b	Launching at the equator puts a satellite straight into a geostationary orbit, launching
	from another point would require rocket fuel to get the satellite into the correct position.
15	Drop it in the opposite direction to the motion of the space station.
16	As R decreases F increases, therefore acceleration increases and so does velocity
17	The space station is a satellite and is in free fall around the Earth. No normal force is

supplied by the space station to the astronauts.

$$\frac{18}{\frac{4\pi^2 r^2}{r^2}} = \frac{GM_E}{r}$$

$$\frac{18}{\frac{1}{r^2}} = \frac{GM_E}{r}$$

$$\frac{18}{r^2} = \frac{1}{r^2} = \frac{1}{r^2}$$

$$T = \sqrt{\frac{4\pi^2 r^3}{GM_E}} = \sqrt{\frac{4\pi^2 (550 \times 10^3 + 6.37 \times 10^6)^3}{G \times 5.98 \times 10^{24}}}$$

5.74 × 10³ s (1.59 hours)

Motion and Forces in a Gravitational Field: Set 4				
Set	Problem	Solution		
4	19a	$v = \frac{2\pi r}{t} = \frac{2\pi \times 6.71 \times 10^8 m}{3.07 \times 10^5 s}$		
		$1.37 \times 10^4 \text{ m s}^{-1}$		
	19b	$M_1 = \frac{v^2 r}{G} = \frac{(1.37 \times 10^4)^2 \times 6.71 \times 10^8}{G}$ 1.90 × 10 ²⁷ kg		
	20	$M_E = \frac{4\pi^2 r^3}{Gt^2} = \frac{4\pi^2 (6.37 \times 10^6 + 2.02 \times 10^7)^3}{G \times (12 \times 3600)^2}$ 5.97 × 10 ²⁴ kg		
	21	If satellite is geostationary then period is 24 hours		
		From $M_E = \frac{4\pi^2 r^3}{Gt^2}$, $r = \sqrt[3]{\frac{M_E Gt^2}{4\pi^2}}$		
		$r = \sqrt[3]{\frac{M_E \times G \times (24 \times 3600)^2}{4\pi^2}}$ 3.59 × 10 ⁷ m		
	22	$r = \sqrt[3]{\frac{M_1 G t^2}{4\pi^2}}$		
		Using the equation above and cancelling everything that is similar Ratio Titan:Moon = $\sqrt[3]{108 \times 14^2} \div \sqrt[3]{27.3^2}$ $3.05 \times$ (radius of Moon's orbit around Earth)		
	23a	$F = G \frac{M_1 M_2}{d^2}$		
		At perihelion $F = G \frac{1.99 \times 10^{30} \times 3.30 \times 10^{23}}{(4.6 \times 10^{10})^2}$ 2.07 × 10 ²² N; Similarly at aphelion 9.20 × 10 ²¹ N		
	23b	Velocity also changes		
		$v = \sqrt{\frac{Fr}{m}}$		
		At perihelion $v = \sqrt{\frac{2.07 \times 10^{22} \times 4.6 \times 10^{10}}{3.30 \times 10^{23}}}$ 5.37 × 10 ⁴ m s ⁻¹ ;		
		$5.37 \times 10^{\circ} \text{ m s}^{-1}$ Similarly at aphelion $4.39 \times 10^{4} \text{ m s}^{-1}$		
	23c	Total energy stays constant, as the kinetic energy decreases (with increasing r) then gravitational potential energy increases (with increasing r).		

ş